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Abstract. The additional symmetry for the properties related to the ground state of the atom is considered
taking into account many-electron effects. Calculations of the I4f , I3d, I2p, I3p binding energies, 4fN−15d –
4fN system differences and 2p, 3p electron affinities in the second order of perturbation theory and in the
configuration interaction approximation have been performed for the ground configurations with one open
shell. The analysis of separate many-electron corrections for these quantities and their variation along the
sequences of atoms and ions shows that the main corrections maintain the considered symmetry.

PACS. 31.10.+z Theory of electronic structure, electronic transitions, and chemical binding

1 Introduction

Some characteristics and properties of the ground state of
atoms and ions (binding energies, differences between the
energies of the lowest levels of two configurations lN−1l′

and lN [1–3] as well as some other physical and chem-
ical quantities [4–7]) show additional symmetry proper-
ties. Variation of the experimental data for such quantities
along the isoionic sequences, when fN or dN shell is filled,
demonstrates regularities with respect to a quarter of the
shell. Their theoretical explanation was given in single-
configuration pure ground state approximation [1–8]. Usu-
ally it is related to the properties of the energy expression
for the ground level of an atom [1–5,8]. The spin-polarized
model in the LL-coupling scheme developed in [9] and ap-
plied for the consideration of the maximum multiplicity
and ground states in [10] allows the simpler interpreta-
tion of the additional symmetry [6,7]. Such interpretation
is outlined and generalized in Section 2 of this work.

The main aim of our work is to show that the domi-
nant many-electron effects maintain the considered sym-
metry. Till now only the symmetry of the empirical cor-
rections to the ground state energy was investigated [7].
In Section 3 we analyze for the first time the symmetry of
various many-electron corrections to the ground state en-
ergies and their differences. For this purpose the results of
systematic calculations for atoms and ions with one open
shell by second order perturbation theory and configura-
tion interaction method are used. These calculations have
been performed with transformed radial orbitals [11], they
are obtained from the orbitals of the considered configu-
ration and approximate fairly well the multiconfiguration
orbitals for the admixed configurations [12].

a e-mail: karazija@itpa.lt

2 Symmetry with respect to a quarter
of the shell in the single-configuration
approximation

In the single-configuration central field model the well-
known approximate symmetry between the electrons and
vacancies takes place. The partially (lN ) and almost
(l4l+2−N ) filled shells have the same many-electron terms
and there exist some simple relations between spin-
angular parts of matrix elements of operators for these
complementary shells [12].

The electronic shell in its highest spin-multiplicity
state (in the following shortly highest multiplicity state)
can be separated in a unique way into two subshells with
spins of electrons directed up and down [9]:

lN →
{
lN↓ for N ≤ 2l + 1,

l2l+1
↓ lN−2l−1

↑ for N > 2l + 1.
(1)

The electron-vacancy symmetry for the subshell having
only 2l+1 single-electron states manifests as the symmetry
with respect to a quarter of the shell:

lN → l2l+1−N for N ≤ 2l+ 1,

lN → l6l+3−N for N > 2l+ 1.
(2)

It takes place in the orbital space, but like the symmetry
with respect to a half of the shell it is distorted in the
radial space. Thus the coefficients at the radial integrals
in the matrix elements of operators, whose mean value
is equal to zero, differ for the highest multiplicity states
of complementary shells (2) only by a phase factor. For
example, the matrix element of the standard unit operator
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U (k) (k 6= 0) fulfils the relations [9]:〈
lNγh

∣∣U (k)
∣∣lNγh

〉
= (−1)k+1

〈
l2l+1−Nγ′h

∣∣U (k)
∣∣l2l+1−Nγ′h

〉
for N ≤ 2l + 1, (3)

〈
lNγh

∣∣U (k)
∣∣lNγh

〉
= (−1)k+1

〈
l6l+3−Nγ′h

∣∣U (k)
∣∣l6l+3−Nγ′h

〉
for N > 2l + 1, (4)

where γh, γ
′
h are the states of highest multiplicity (they

have the same quantum numbers defined in the orbital
space, but differ by the spin and seniority values).

The corresponding symmetry for the matrix elements
of the Coulomb interaction within the lN shell follows
from (3, 4). The contribution of one-electron spin-orbit
interaction to the ground state energy may be expressed
in terms of the orbital quantum number of the shell,
thus the matrix element of this interaction also obeys the
considered symmetry. The other more important relativis-
tic orbit-orbit correction has the same symmetry proper-
ties as the Coulomb interaction between electrons. Con-
sequently, in the case of LS coupling within an electronic
shell the main term-dependent relativistic corrections also
obey the symmetry with respect to a quarter of the shell.
However, when JJ-coupling within a shell takes place, it
is split into nljN subshells with different number of one-
electron states and the considered symmetry disappears.
In actinides within 5fN shell the scheme of coupling is
closer to LS-coupling, thus the symmetry with respect to
a quarter of the shell is characteristic not only of 4fN shell
in lanthanides, but also of 5fN shell in actinides [5].

The binding energy of nl electron in the nlN shell
equals to the energy difference for the ground states of
nlN−1 and nlN configurations. The variation of this quan-
tity in the series of atoms or ions with the filling nlN shell
mainly depends on the angular parts of matrix elements.
Thus, taking the radial integrals equal for both configura-
tions, Inl is expressed in terms of the differences of coeffi-
cients at the integrals. These differences for the Coulomb
and spin-orbit interaction show the “shifted” symmetry
with respect to the numbers of electrons N0 = l + 1 and
3l+ 2:

lN → l2l+2−N for N ≤ 2l+ 1,

lN → l6l+4−N for N > 2l+ 1.
(5)

The most interesting is the case of fN shell with a rather
large number of single-electron states. Then the differences
of coefficients are used:

∆ei
(
fN
)

= ei
(
fN−1γg

)
− ei

(
fNγ′g

)
, i = 1, 3, (6)

∆χf
(
fN
)

= χf
(
fN−1γg

)
− χf

(
fNγ′g

)
, (7)

where ei are the coefficients at Racah integrals Ei and χf
is the coefficient at the spin-orbit constant; ∆e2 = 0 for
the highest multiplicity states (the energies of levels are
taken with respect to the average energy), γg, γ

′
g are the

ground states of configurations lN−1 and lN .

Fig. 1. Dependence of the differences of coefficients ∆e1

�
fN

�

(�), ∆e3

�
fN ) (•) (6) and ∆χf

�
fN

�
(7) (H) on the number of

electrons N .

The quantities ∆ei,∆χf fulfil the following symmetry
relations [7]:

∆e1

(
fN0−q)−∆e1

(
fN0

)
= −

[
∆e1

(
fN0+q

)
−∆e1

(
fN0

)]
;

∆e3

(
fN0−q) = −∆e3

(
fN0+q

)
;

∆χ
(
fN0−q) = −∆χ

(
fN0+q

)
,

N0 = 4, 11; q = 1, 2, 3. (8)

Thus ∆ei, ∆χf as the functions of N consist of two simi-
lar segments (symmetry with respect to a half of the shell)
and each segment can be coincided with itself performing
the rotation by the angle 180◦ around the points corre-
sponding to N0 = 4 or 11 (symmetry with respect to a
quarter of the fN shell) (Fig. 1). The differences of the
coefficients for pN and dN shells fulfil the similar rela-
tions, but then the dependence on N is more simple. The
trivial case of the symmetry with respect to a quarter of
the shell is the linear dependence of the quantity on N
(the segment of the straight line is coincided with itself
rotating it by the angle 180◦ around a mean point of the
segment).

The dependence of the binding energy on N in single-
configuration approximation is mainly determined by the
difference of the principal coefficient (for 4f and even 5f
electrons by ∆e1 having simple zigzag form), but obtains
more complex character due to the contributions of other
coefficients (Fig. 2). The results are given for the triple
ions of lanthanides with the ground configuration contain-
ing no other open shells except 4fN . The calculations have
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Fig. 2. I4f binding energy (◦, experiment [13,14], H HFP pure
coupling calculation) and the system difference (SD) (•, exper-
iment compiled in [12]; O, HFP calculation) in the sequence of
triply ionized lanthanides Ln3+.

been performed in a single-configuration pure ground state
approximation with Hartree-Fock wave functions taking
into account the relativistic corrections in the Breit-Pauli
form [15] (Hartree-Fock-Pauli (HFP) method). The same
though more approximate symmetry with respect to a
quarter of the nlN shell takes place for the difference of
the ground state energies of two configurations nlN−1n′l′

and nlN [1,2], if the interaction within nlN−1 shell is con-
siderably stronger than its interaction with the excited
n′l′ electron. The characteristic example is given by the
configurations nfN−1(n + 1)d − nfN , then this quantity
has the special name “system difference” (SD).

3 Configuration-mixing corrections
and their symmetry

The regularities briefly described in the previous section
follow from the single-configuration pure ground state ap-
proximation. However, this symmetry is usually not dis-
torted by term and configuration mixing effects: for exam-
ple, the experimental values of I4f and system difference
in the sequence of triply ionized lanthanides differ signif-
icantly from the values calculated in the one-term HFP
approximation (see Fig. 2), but characteristic symmetry
properties with respect to a half and a quarter of the shell
remain. What are the reasons of such invariance?

Of course, the ground state is usually separated ener-
getically from other states, especially in the case of one
open shell, thus the pure coupling approximation is the
best namely for the ground state. On the other hand, the
terms of the highest multiplicity tend to lay lower in the
spectrum and the ground term is mixed more strongly
with them. Such mixing does not violate the considered
symmetry which takes place for all terms of the highest
multiplicity.

The mixing with distant configurations can be taken
into account in the second order of perturbation theory.
Then the difference between the energies of the γg ground
level of configurationK and γ perturbing levels of configu-
ration K ′ can be averaged (E

(
Kγg

)
−E

(
K ′γ

)
is replaced

by E
(
Kγg

)
− Eav(K ′)) and the correction to the ground

state energy ∆E
(
Kγg

)
is expressed in terms of the matrix

element of some effective operator acting on the ground
state [16].

In the case of one open lN shell there exist only four
basic types of admixing configurations K ′, which differ
from the considered configuration K with one open nlN

shell by the quantum numbers of two electrons:

(a) nlN−2l′l′′ and nlN−2l′2;

(b) l′4l
′+1l′′4l

′′+1lN+2 and l′4l
′
lN+2;

(c) l4l11 lN+1l′ and l4l1+1
1 l4l2+1

2 lN+1l′;

(d) l4l11 lN l′l′′, l4l11 lN l′2, l4l1+1
1 l4l2+1

2 lN l′l′′

and l4l1+1
1 l4l2+1

2 lN l′2.

It is convenient to separate ∆E
(
Kγg

)
into term-

dependent
(
∆Et

)
and term-independent

(
∆E0

)
parts in

the following way (the expression is given for the first con-
figuration of every type, the contributions of other config-
urations have the similar form and the same dependence
on N):
(a, b)

∆Et = −
[
E
(
Kγg

)
−Eav(K ′)

]−1∑
kk′

RkRk′

×
∑
t>0

(−1)t(2t+ 1)
{
k k′ t
l l l′

}{
k k′ t
l l l′′

}
×
〈
lNγg

∣∣(U (t)U (t)
)∣∣lNγg

〉
; (9)

(a)

∆E0 =
N

2l+ 1

[
E
(
Kγg

)
−Eav(K ′)

]−1∑
kk′

RkRk′

×
[{

k l l′

k′ l l′′

}
− δ(k, k′)

2k + 1
N

2l+ 1

]
; (10)

(b)

∆E0 =
4l+ 2−N

2l+ 1

[
E
(
Kγg

)
−Eav(K ′)

]−1∑
kk′

R
k
R
k′

×
[{

k l l′

k′ l l′′

}
− δ(k, k′)

2k + 1
4l + 2−N

2l+ 1

]
; (11)
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(c, d)

∆Et = 0; (12)

(c)

∆E0 =
4l + 2−N

2l+ 1

[
E
(
Kγg

)
−Eav(K ′)

]−1∑
kk′

RkRk′

×
[{

k l1 l
k′ l1 l

′

}
− 2

δ(k, k′)
2k + 1

]
; (13)

(d)

∆E0 = 2
[
E
(
Kγg

)
−Eav(K ′)

]−1∑
kk′

RkRk′

×
[{

k l1 l
′

k′ l1 l
′′

}
− 2

δ(k, k′)
2k + 1

]
. (14)

Here Rk, Rk′ are the Coulomb radial integrals multiplied
by the corresponding one-electron submatrix elements of
spherical harmonics. It follows from (3, 4) that the co-
efficients at the radial integrals Rk, Rk′ , for the term-
dependent part of the correction (9) are symmetric with
respect to a quarter of the shell (∆Et disappears in the
(c) and (d) cases). On the other hand, the quantity ∆E0

contains a term quadratic on N which does not obey the
considered symmetry.

The correction due to mixing with a distant configu-
ration corresponding to one-electron excitation can also
be separated into term-dependent and term-independent
parts, however, the first one contains the matrix element of
a three-electron operator, which is not symmetric for com-
plementary configurations (2). On the other hand, there
are rather large matrix elements between the admixed con-
figurations of the Brillouin’s type while using the approxi-
mate wave functions and the calculation of many-electron
effects in the second order of the perturbation theory be-
comes inaccurate. For this reason the influence of such
configurations have been calculated by the configuration
interaction method.

Calculation in the second order perturbation theory
becomes rather effective using the transformed radial or-
bitals [11,17]. In contrast to previous works with their use
[17–19], in this work we applied more complex transforma-
tions with a variable parameter [20]. The transformed ra-
dial orbital Ptr

(
n′l′
∣∣r) is obtained from the Hartree-Fock

radial orbital PHF

(
nl
∣∣r) of the configuration under adjust-

ment multiplying it by the transforming function f(r)

Ptr

(
n′l′
∣∣r) = Nf(r)PHF

(
nl
∣∣r), (15)

where N is the normalization factor. The two forms (al-
gebraic and exponential) of the f(r) function have been
used:

fa(r) =
rk

α+ rm
, fe(r) = rk exp

(
− αrm

)
. (16)

The parameters k and m are positive and integer num-
bers, they could be deduced in some way from a physical

consideration [20]. The parameter α as well as the form
of f(r) function are determined from the condition of the
maximum of the averaged (over all terms of the consid-
ered configuration) energy correction in the second order
of perturbation theory.

For the atoms and ions with a filling 2pN shell the ba-
sis of the transformed radial orbitals with the principle
quantum number n from 3 up to 5 and orbital quantum
number l ≤ 4 was set. Such basis takes into account about
30 admixed configurations. In the case of 3pN shell the or-
bitals with 4 ≤ n ≤ 6 and l ≤ 5 were used and the number
of admixed configurations was about 140. The considera-
tion of configurations with the open 3dN shell included the
transformed radial orbitals with 4 ≤ n ≤ 7 and l ≤ 5, thus
the number of admixed configurations reached 170. The
largest number of such configurations (1400–2100) was
taken into account for the lanthanide ions, then all possi-
ble admixed configurations corresponding to two-electron
excitations with 6 ≤ n ≤ 10, 0 ≤ l ≤ 6 were calculated in
the second order of perturbation theory. The spin-angular
parts of the matrix elements were calculated using the ta-
bles of reduced coefficients of fractional parentage [21].

The systematic investigation of the many-electron cor-
rections for the energies of the ground state and the bind-
ing energies of 4fN electrons has been performed for the
triple lanthanide ions (Ln3+) with 4fN open shell.

The corrections for the binding energy I4f in various
approximations are shown in Figure 3. In the case of fN
shell, the symmetry of the considered quantity with re-
spect to a half of the shell manifests itself by similarity
of two segments of the curve corresponding to the inter-
vals N = 1−7 and 8−14 and the symmetry with respect
to a quarter of the shell manifests by the coincidence of
the segment with itself performing the rotation by the
angle 180◦ around the points corresponding to N0 = 4
and 11. Such symmetry is characteristic of the corrections
∆I

(2)
4f and ∆I(1)

4f corresponding to two-electron and single-
electron excitations as well as for the total correction,
which account for about 70–90% of difference between the
HFP results and experiment. Of course, two-electron ex-
citations play a more important role than single-electron
excitations; in the second half of the group they even give
negative contribution. The difference Iexp

4f −IHFP
4f between

the experimental and calculated by single-configuration
method values of I4f binding energy shows that all other
many-electron corrections also obey the considered sym-
metry.

The correction∆I(2)
4f is mainly determined by its term-

independent part following from (10, 11, 13, 14); the term-
dependent part gives only a small contribution (Fig. 4).
The variation of this last quantity as well as its parts (cor-
rections to the energies of Ln3+ and Ln4+ ground states)
has symmetric but rather complicated character.

Four types of term-independent corrections (10, 11,
13, 14) have different dependence on N . As the term
with δ(k, k′) exceeds as a rule the 6j coefficient value,
the correction (10) increases quadratically, (11) decreases
quadratically with N , (13) decreases linearly with N and
(14) does not depend on N . Taking the differences of
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Fig. 3. Dependence of the difference Iexp
4f −IHFP

4f (•) as well as

of configuration mixing corrections ∆I
(2)
4f (O) (corresponding

to two-electron excitation in the second order of perturbation

theory), ∆I
(1)
4f (H) (corresponding to the single-electron excita-

tions calculated by the configuration interaction method) and

the total configuration mixing correction ∆I
(1)+(2)
4f (�) (single-

and two-electron excitations calculated together) on the num-
ber of 4f electrons in the Ln3+ 4fN sequence.

these corrections for fN and fN−1 shells, the quadratic
dependence turns into linear and the linear dependence
turns into the constant contribution. The linear increase
of the term-independent part of ∆I(2)

4f with N shows that
it is mainly determined by two-electron excitations from
4fN shell (case (a)). Some deviations from linearity, es-
pecially in the middle of the group, are caused by the
dependence of the wave functions and energy denomina-
tor

[
E
(
Kγh

)
− Eav(K ′)

]−1 on the energy of the ground
state.

The correction ∆I
(1)
4f is obtained as the difference of

two corrections for the energies of ground states of Ln4+

and Ln3+ (Fig. 5). They have the quadratic dependence on
N and are shifted one with respect to another by ∆N = 1.
This explains why ∆I

(1)
4f changes the sign and becomes

negative in the second part of the group. The jump be-
tween Gd3+ 4f7 and Tb3+ 4f8 is mainly caused by the
dependence of the radial integrals on the ground state en-
ergy: the main term-dependent coefficient is changed in a
largest extent at the middle of the group. The monotonic
character of ∆I(1)

4f and of its contributions demonstrates
that as the two-electron corrections, they are mainly

Fig. 4. Term-independent (H) and term-dependent (O) parts

of the ∆I
(2)
4f correction for Ln3+.

Fig. 5. Dependence of the correction ∆I
(1)
4f (�) and its sepa-

rate parts for Ln3+ 4fN (O) and Ln4+ 4fN−1 (H) ions on the
number of electrons N .
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Fig. 6. System difference values for the 4fN−15d−4fN con-
figurations of Ln3+: (•) experiment [14]; (O) HFP calculation;
(H) SDHFP + ∆SD(2); (�) SDHFP + ∆SD(1); (�) SDHFP +
∆SD(1)+(2).

determined by the term-independent part. Thus ∆I(1)
4f be-

comes symmetric with respect to a quarter of the shell,
though its parts do not possess this property.

The values of the system difference for configurations
4fN−15d and 4fN calculated in various approximations
(Fig. 6) show more approximate symmetry than for I4f .
The symmetry of SDHFP is distorted by Coulomb ex-
change interaction between 4fN−1 and 5d electrons as
well as by mixing with the terms of lower multiplicity.
The configuration-mixing corrections in the second order
of perturbation theory also contain the additional part,
corresponding to the three- and four-electron effective op-
erators. It is interesting to note that the experimental val-
ues show better symmetry than the calculated values. This
indicates partial compensation of non-symmetric contri-
butions.

Configuration-mixing corrections for the system differ-
ence show the similar regularities as for I4f : the term-
independent part of ∆SD(2) considerably exceeds its
term-dependent part and increases with N , the ∆SD(1)

correction decreases and becomes negative (however, its
linear dependence on N is distorted by the stronger de-
pendence on the term) (Fig. 7). At the numbers of elec-
trons N = 0, 1 and 13, 14 some types of excitations
become impossible; it is the reason of deviations of the
term-independent part of ∆SD(2) from linearity as well

Fig. 7. Various configuration mixing corrections for the system
difference in the Ln3+ 4fN sequence: (�) term-independent
part of ∆SD(2); (�) term-dependent part of ∆SD(2); (4) the
∆SD(1) correction and (H) ∆SD(3)+(4) contribution of the
three- and four-electron operators.

as of the distortion of symmetry for the term-dependent
part of ∆SD(2) at small and large numbers of electrons.
The contribution of the additional three- and four-electron
terms of the effective operator

(
∆SD

(3)+(4)
4f

)
obtains rel-

atively small values and varies almost linearly.
In order to investigate whether the symmetry proper-

ties of the mixing corrections for I4f hold for other con-
figurations with one open shell, the calculations of I3d for
triple ions of the iron group have been performed. Such
ionization degree was chosen to obtain the 3dN ground
configuration for all elements and to avoid strong (s+d)N
mixing. In triple ions the configuration 3dN−24s2 has been
treated as distant with respect to 3dN configuration, its
contribution calculated in the second order of perturba-
tion theory and included into the correction ∆I

(2)
3d . The

configuration 3dN−14s has been taken into account by the
configuration interaction method.

The dependence of I3d onN has simpler character than
for I4f and is almost linear within the first and second
half of the shell (Fig. 8) (as it was already mentioned,
the linearity is the trivial case of the symmetry with re-
spect to a quarter of the shell). The corrections ∆I(2)

3d

and ∆I
(1)
3d show the same regularities as for 4f electrons
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Fig. 8. I3d binding energy for the triple ions of the iron group:

(•) Iexp
3d [22]; (�) IHFP

3d ; (O) IHFP
3d + ∆I

(2)
3d ; (H) IHFP

3d + ∆I
(1)
3d ;

(�) IHFP
3d +∆I

(1)+(2)
3d .

(Fig. 9): they vary almost linearly with N , though their
contributions from separate configurations have quadratic
character; ∆I

(2)
3d increases and, vice versa, ∆I

(1)
3d de-

creases and becomes negative in the second part of the
group; the increase of the main correction ∆I

(2)
3d worsens

the correspondence between the single-configuration and
experimental values for the second half of the group; the
term-dependent part of ∆I(2)

3d obtains rather small values.
The discrepancy of the term-independent part of ∆I(2)

3d
from linearity at small numbers of electrons is caused by
the above-mentioned interdiction of some excitations from
the shell with N = 0, 1.

It is necessary to note that not only the distant config-
urations but also some neighboring configurations can give
the shift approximately symmetric with respect to a quar-
ter of the shell. For example, mixing of the ground state of
dN shell with the exited state of configuration dN−2s2 is
determined by the matrix element whose square is linear
on N :

〈
dNγg

∣∣He
∣∣dN−2γgs

2 1S
〉2

=
1
50
G2(d, s)2

×
{

0 if N ≤ 5,

2(N − 5) if N > 5,
(17)

Fig. 9. Various configuration mixing corrections for the I3d
binding energy in the sequence of the triple ions with 3dN

open shell of the iron group: (O) term-independent part of the

∆I
(2)
3d correction; (H) term-dependent part of the ∆I

(2)
3d and

(�) ∆I
(1)
3d correction.

where He is the Coulomb interaction operator and
G2(d, s) is the Slater exchange integral. This expression
is obtained by the formal summation over the states of
dN−2s2 configuration and using of the explicit expression
for the matrix element of the effective operator in the case
of the highest multiplicity state.

The half of pN shell contains only 3 electrons. The
dependence of Inp on N is usually rather regular and
linear within two halves of the shell. This is character-
istic of the experimental as well as of Hartree-Fock and
configuration mixing values (Fig. 10, Tab. 1). The last
ones have been calculated by the configuration interaction
method, because the second order of perturbation theory
is not suitable for the mixing of quasidegenerate configu-
rations (one such configuration 2s02pN+2 for 2pN exists
even at n = 2). The common feature of Inp with I4f and
I3d is the increase of the total correction ∆Iexp −∆IHFP

with N , especially for the second half of the group; as
shown, it is caused by the main term-independent correc-
tion corresponding to the two-electron excitations from
the considered shell.

The symmetry with respect to a half of the shell
takes place even for the electron affinities, which strongly
depend on the configuration mixing effects (Figs. 11
and 12). The linear dependence of this quantity as well
as of the configuration mixing correction for it with N
within the two half of the group enables their interpola-
tion. This symmetry is approximately manifested for the
ground states of negative ions with 3dN open shell too [23].
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Table 1. Binding energies, system differences and electron affinities calculated by configuration interaction method (CI) or
combining CI with second-order perturbation method for two-electron excitations (CI+PT), in eV.

Quantity Ionization
PPPPPPPMethod

N
1 2 3 4 5 6 7 8 9 10 11 12 13 14

degree

I4f 4 CI+PT 36.19 38.71 40.28 40.45 40.76 42.17 43.64 38.43 40.25 41.57 41.53 41.48 42.82 44.61

SD 4 CI+PT 6.03 7.52 9.51 9.49 9.62 10.72 11.73 6.46 8.10 9.62 9.92 9.42 10.25 11.86

I3d 4 CI+PT 43.05 47.35 49.39 51.07 54.55 51.33 55.21 57.72 60.24 64.06 – – – –

I2p 1 CI 8.24 11.13 14.40 13.33 17.16 22.10 – – – – – – – –

I2p 2 CI 24.27 29.49 34.98 34.74 40.77 47.08 – – – – – – – –

I3p 1 CI 5.92 8.03 10.29 9.87 12.36 15.15 – – – – – – – –

I3p 2 CI 16.23 19.67 23.26 23.49 27.37 – – – – – – – – –

EA(2p) 0 CI – 0.17 1.12 −0.67 0.99 2.91 – – – – – – – –

EA(3p) 0 CI – −2.51 0.85 0.99 0.94 3.42 – – – – – – – –

Fig. 10. I2p binding energies for the neutral atoms with 2pN

open shell: (•) experiment [22]; (O) HFP calculation and (H)
calculation by the configuration interaction method.

4 Conclusion

Some important atomic quantities related to the ground
state of atoms show the additional symmetry with respect
to a quarter of the electronic shell, but this symmetry
was interpreted theoretically using only single configura-
tion pure LS-coupling approximation. In this work it is
shown, that the additional symmetry is maintained by
some important many-electron effects.

The systematic investigation of the configuration mix-
ing corrections for the I4f , I3d, I2p, I3p binding energies,
4fN−15d−4fN system differences as well as for 2p and 3p
electron affinities shows that the main corrections weakly
depend on the quantum numbers of the ground term.

Fig. 11. Electron affinity for the negative ions with the npN

open shell as a function of the number of electrons N : experi-
mental data [22] for n = 3 (◦), 4 (•) and 5 (�).

Though the main corrections for the ground state energy
depend quadratically on the number of electrons N , their
difference for the binding energy or system difference ob-
tains linear character (except of a discontinuity at middle
of the group due to the strong dependence of the radial
integrals on the term of the ground state). Consequently,
the mixing with distant configurations maintains the sym-
metry with respect to a quarter of the shell.

Taking into account such mixing effects for binding
energies usually only term-independent part (having sim-
ple expression) can be calculated. On the other hand, the
additional symmetry properties give the possibility to in-
terpolate and extrapolate the experimental values more
accurately.
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Fig. 12. Electron affinity for the negative ions with the 3pN

open shell as a function of the number of electrons N : (•) ex-
perimental data [22] and the values calculated by the Hartree-
Fock-Pauli (O) and configuration interaction (H) methods.

The obtained fairly close correspondence of the calcu-
lated values to experimental data for binding energies and
system differences shows that the second order perturba-
tion approach using transformed radial orbitals allows one
to take effectively into account the configuration mixing
effects for these quantities.
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